
Sujay V. Kumar

Science Applications International Corporation/NASA Hydrological Sciences Laboratory

LVT tutorial, Sept 1-2, 2015

LVT hands-on
exercises

Fortran 90/95 compiler (intel, gfortran preferred)

C compiler

Earth System Modeling Framework (ESMF; 5.x or greater)
(https://www.earthsystemcog.org/projects/esmf/)

NetCDF (3 or 4; http://www.unidata.ucar.edu/software/
netcdf/)

Grib-API (https://software.ecmwf.int/wiki/display/GRIB/Home)

HDF5 (https://www.hdfgroup.org/HDF5/)

HDF4/HDFEOS

 Software requirements

LVT cookbook!

https://www.earthsystemcog.org/projects/esmf/
http://www.unidata.ucar.edu/software/netcdf/
https://software.ecmwf.int/wiki/display/GRIB/Home
https://www.hdfgroup.org/HDF5/

Subversion repository (https://
progress.nccs.nasa.gov)

Accessible to NCCS users

User’s guide

Step-by-step instructions on how to build the
LVT code

Reference manual/in-line documentation

http://lis.gsfc.nasa.gov

http://modelingguru.nasa.gov

 Software maintenance
Land surface Verification Toolkit

LVT 7.1 Users’ Guide

August 7, 2015

Revision 1.2

History:

Revision Summary of Changes Date
1.2 Update lvt.config documentation May 12, 2015

National Aeronautics and Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

1

https://progress.nccs.nasa.gov
http://lis.gsfc.nasa.gov
http://modelingguru.nasa.gov

Build the required software libraries

Setup the LVT environment
variables

Run the configure script, followed
by the compile script.

 Building LVT

5.4 Build Instructions

1. Perform the steps described in Section 4 to obtain the source code.

2. Goto the $WORKING/src/ directory. This directory contains two scripts
for building the LVT executable: configure and compile.

3. Set the LVT ARCH environment variable based on the system you are
using. The following commands are written using Bash shell syntax.

• For an AIX system
% export LVT ARCH=AIX

• For a Linux system with the Intel Fortran compiler
% export LVT ARCH=linux ifc

• For a Linux system with the Absoft Fortran compiler
% export LVT ARCH=linux absoft

• For a Linux system with the Lahey Fortran compiler
% export LVT ARCH=linux lf95

It is suggested that you place this command in your .profile (or equivalent)
startup file.

4. Run the configure script first by typing:

% ./configure

This script will prompt the user with a series of questions regarding sup-
port to compile into LVT, requiring the user to specify the locations of
the required and optional libraries via several LVT specific environment
variables. The following environment variables are used by LVT.

Variable Description
LVT SRC Location of the LVT source tree ($WORKING/src/)
LVT ARCH LVT architecture (See below)
LVT FC Fortran compiler to be used (mpif90, if mpi is installed)
LVT CC C compiler to be used (mpicc, if mpi is installed)
LVT GRIBAPI path to grib api library
LVT NETCDF path to NETCDF library
LVT HDF4 path to HDF4 library
LVT HDF5 path to HDF5 library
LVT HDFEOS path to HDFEOS library
LVT MODESMF path to ESMF header files
LVT LIBESMF path to ESMF library files

Note that the CC variable must be set to a C compiler, not a C++ compiler.
A C++ compiler may mangle internal names in a manner that is not
consistent with the Fortran compiler. This will cause errors during linking.

18

 Example 1

 LIS Noah LSM output vs USDA ARS in-situ surface soil moisture measurements

 LVT configuration
For the text entries, case/exactness of the string is important!

For entries with spaces, use double quotes. Otherwise
quotes are not necessary

Comments can be inserted with a # prefix

24!

Surface soil moisture improvements

Assimilation of simulated soil
moisture

Assimilation of simulated L-band
radiances

Maps present RMSE (DA) – RMSE (OL) of surface
soil moisture (10cm)

Blue (negative values) indicate improvements
Red (positive values) indicate degradations

2d domain

…

1d grid space

…

1d tile space

 Configuration: Data sources

 Two data sources must always be specified, separated by spaces

“LIS output” “LIS output”

“LIS output” “none”

“LIS output” “NLDAS2”

“NLDAS2” “CMC”

“NLDAS2” “GDAS2”

 Configuration: Time specification

LVT recomputes the clock timestep based on the data
intervals of each data stream. The minimum tilmestep
value is chosen.

LVT clock timestep = min (timestep set in the config file,
timestep of datastream 1, timestep of datastream 2)

 Configuration: Analysis domain

Specifies the extents of the LVT analysis domain

The config entries are dependent on the chosen LVT map
projection

The LVT analysis domain can be a subset of the domain specified
in the ‘Input domain and mask data file’

The spatial resolution of the LVT analysis domain can be different
from the spatial resolution of the ‘Input domain and mask data file’

 LVT will generate the landmask for the analysis domain by
interpolating/upscaling the ‘LANDMASK’ field

The input NetCDF file used to create the gridspace in
LVT

Should contain a field called “LANDMASK” with a 0/1
landmask representation

The global attributes/dimensions of this file should
contain relevant map projection and domain extent
information

 Configuration: Datastream attributes table

Variable from datastream 1
Variable name
Number of selected levels (0=>not selected)
Units
Direction type
Time averaging option (0-instantaneous, 1- time
averaged)
Number of total vertical levels

Variable from datastream 2

Specifies the variables being analyzed from the
datastreams

Each line represents variable specification from
datastream 1 and datastream 2

Specification for each variable consists of 6
columns; variable names follow ALMA
convention

Any variable from datastream 1 can be
compared to any variable from datastream 2
(as long as the metric of comparison is
meaningful!)

Qle being compared against surface soil
moisture, total precipitation, Net radiation
Qle from datastream 1 is used for multiple
comparisons against variables from
datastream 2
Radiative temperature comparison is turned
off

 Configuration: Vertical averaging, external masking
Specifies the thickness (m) of the surface and root
zone soil layers used in the analysis

LVT will vertically average the individual soil layers (of
the datastreams) to the thickness used in analysis

The averaging will be weighted by the thicknesses

0 - no masking

1- external temporally varying mask

2 - external fixed static mask

3 - temporal monthly mask

Apply monthly mask (0/1) in the analysis
(restricts the analysis to JJA in the above
case)

 Configuration: Output frequency
Observation count threshold - computations are excluded over those grid points where the specified
minimum count is not met
Temporal averaging interval - the individual datastream values are averaged upto this interval and then the
metric is computed
Stats output interval - the metric values are averaged upto the stats output interval

h=0 h=6h=3 h=12 h=0 h=0
d=1 d=2 d=30

……
Datastream 1

Datastream 2

Metric

}} }
……

Output value of metric

 Configuration: Time series output Specifies the name of the file that lists the locations and regions
in the domain where ASCII time series data (for each metric) are
to be derived

Five different styles of specifying the locations/regions

Style 3: Specify 1-d tile bounding indices

Style 5: Regions defined by a
categorical mapStyle 4: List of lat/lons to specify a region

Style 1: Specify lat/lon bounding boxes Style 2: Specify column/row bounding indices

 Configuration: Metrics attributes
Each line specifies an analysis metric

8 entries for each metric

Metric name (use the user’s guide or the master file)
Use option (0 or 1)
Time option (0 or 1 ; whether to compute the metric at the
temporal averaging interval and output them at the stats
output intervals)
Temporal output - whether to write gridded metric files at
the stats output interval (time option must also be
enabled)
Extract time series - whether to extract (ASCII) time series
files for the metric, for each sub-domains specified in the
time series location file
Threshold: Threshold value to be used in computing
categorical metrics
Compute average seasonal cycle (monthly, 3-monthly)
Compute average diurnal cycle

 Configuration: Spatial averaging/confidence intervals

“pixel-by-pixel” option computes the metrics
separately at each grid point

“region-based” option computes the metrics using the
average values of the datastreams over each region

Requires the user to provide a categorical map (in
binary, big-endian, sequential access format)

Confidence interval threshold for computed statistics.
The CIs are calculated based on a two-tail t-test

CIs are computed only across the spatial domain (and
not temporally).

e.g. if RMSE is computed for 100 stations, then the
reported CIs are the values for the average RMSE
for the 100 stations.

 Configuration: Stratification options
When variable based stratification is used, 3 values will be computed for
each metric

1.Metric value with no stratification

2.Metric value where the stratification variable value is above the
threshold

3.Metric value where the stratification variable value is below the threshold

Stratification performed for three data sources

Separate files (for each metric) that computes metric values for the specified
number of bins will be generated.

e.g. RMSE for each of the 12 elevation, slope and aspect categories will be
computed

 Configuration: Smoothing

 Finally, details of the datastreams…

Description of the ARS data

Data directory, list of stations

Description of the LIS output

Output interval

Analysis data class (LSM, routing, RTM,
Irrigation, ..)

LDT generated input file used in the LIS run

Output attributes table used in the LIS run

Output naming style, format, methodology

Subgrid tiling settings used in the LIS run

Soil layering information

 Running LVT (Example 1)
Run the executable!

Check to see if the simulation
exited cleanly

The run generates a LVT
logfile, STATS output directory

<MEAN/ACORR>_SUMMARY_STATS.dat -files containing summary statistics for mean and anomaly correlation

MEAN_<lr/lw/rc/wg>.dat - files containing mean time series values

LVT_<MEAN/ACORR>_FINAL.200608310000.d01.nc - NetCDF files containing gridded MEAN/Anomaly correlation values for the entire analysis time
period

RST - directory containing restart files

 Examine the LVT output
Valid values at Walnut Gulch (wg),
Little River (lr), Little Washita (lw)

Still undefined Anomaly R values at
Reynolds Creek (rc)

Model mean value at rc is valid,
observation mean at rc is not

Likely reason is that the observations
at rc are not continuous and therefore
do not meet the observation count
threshold of 100

Use the ‘gnuplot’ scripts to plot the
timeseries data

gnuplot wg.plt

gnuplot lr.plt

gnuplot lw.plt

gnuplot rc.plt

 ASCII time series file
First 5 columns represent the time
information (year, month, day, hour, minute)

For each variable, 6 columns for
datastream1, 6 columns for data
stream 2

Columns 6-11 represent the soil
moisture values from LIS output,
12-17 represent soil moisture
values from ARS data

mean value

standard deviation

minimum

maximum

ensemble standard deviation

confidence interval If more variables are included in the analysis,
additional columns will be included for each variable

Note that for comparison metrics, there will be no
columns for observation values

 FINAL NetCDF files

The Anomaly R file contains
metric values for three grid points

 FINAL NetCDF files

Soil moisture field from ds2 (datastream2) in the
comparison of soil moisture vs. soil moisture

Soil moisture field from ds1 (datastream1) in the
comparison of soil moisture vs. soil moisture

 Lets look at the average seasonal cycle..

Enables the computation of
average seasonal cycles

gnuplot lr_asc.plt

 Example 2

Comparing two LIS outputs:
LIS Noah LSM output vs. LIS CLSM LSM output

 Example 2: Comparing two LIS outputs.. Noah LSM output (daily) vs
CLSM LSM output (3 hourly)

Both data sources are “LIS output”

 Datastream specification (when the two analysis sources are the same)

The analysis sources are
specified in columns, separated
by spaces

Noah has 4 soil moisture layers,
CLSM has 3

Soil moisture layer thickness of
Noah (4 values) are listed first
followed by that of CLSM (3 values)

Similar specification for the soil
temperature layers (4 & 6 values)

 Examining example 2 output..

28

Note the order of variables in the output : Qle_vs_Qle, Qh_vs_Qh, soilmoist_vs_soilmoist, rootmoist_vs_rootmoist

The same order will be maintained in the time series and gridded output files

 Example 2 time series output..

29

gnuplot midwest_qle.plt

gnuplot midwest_qh.plt

gnuplot midwest_soilmoist.plt

gnuplot midwest_rootmoist.plt

 Example 2 time series output..

30

Note that range of standard deviation, min, max, CIs
for each variable in each row, as the sub-regions
(including MIDWEST) in the TS_LOCATIONS file
encompass an area (as opposed to a point in
example 1)

First 5 columns represent the time
information (year, month, day, hour, minute)

6 columns for RMSE of each variable

Columns 6-11 (Qle), Columns 12-17 (Qh), Columns
18-24 (SoilMoist), Columns 30-35 (RootMoist)

mean value

standard deviation

minimum

maximum

ensemble standard deviation

confidence interval

 Example 2 gridded FINAL outputs

31

For certain metrics (RMSE, for e.g.), the standard
deviation of the metric is included in the FINAL output

 Example 3

 Comparison of two non-LIS outputs: NLDAS2
(Noah) vs. AGRMET operational output

 Example 3: NLDA2 vs AGRMET

NLDAS2 outputs are hourly
over CONUS at 0.125 deg,
AGRMET outputs are global at
3 hourly intervals at 0.25 deg

 Examining example 3 output..

34

 Lets compute the average diurnal cycles..

35

Enable the computation of
average diurnal cycles

gnuplot sgp_adc.plt
Why are *ADC* files not
present for R metric?

Because the temporal computations
are not enabled

 Lets stratify the analysis by landcover type..

36

gnuplot sgp_r_lc.plt

 Example 4

 Comparison of two satellite datasets: ESA CCI
soil moisture vs GIMMS NDVI

 Example 4: ESA CCI vs GIMMS NDVI

ESA CCI data is daily,
GIMMS NDVI data is
monthly

The metric (R) is computed with a
temporal lag of 1 month - values from
datastream 1 will be compared to next
month’s values from datastream 2

 Examining example 4 output..

39

GIMMS NDVI

Lag=1 month

d=1 d=2 d=3 m = 1 m=2 m=3

ESA CCI

 Use a negative temporal lag

40

GIMMS NDVI

d=1 d=2 d=3 m = 1 m=2 m=3

ESA CCI

Lag=-1 month

 Increase the temporal lag..

41

GIMMS NDVI

d=1 d=2 d=3 m = 1 m=2 m=3

ESA CCI

Lag=2 month

 Example 5

 Generating drought indicators (SPI)

 SPI (standardized precipitation index)

Widely used as the standard index for quantifying meteorological drought
Only based on precipitation
Quantifies observed precipitation as a standardized departure from a selected
probability distribution
Typically precipitation data is fitted a gamma distribution
Can be interpreted as the number of standard deviations by which the
observed anomaly deviates from the long-term mean

SPI labels and their relationship to the normal curve

 Example 5 configuration
Computing SPI (and other drought indices) typically requires two passes through the data

1. First pass to compute the climatology/fit the distribution
2. Second pass to derive the index relative to the climatology/distribution

A long archive is desired to ensure enough sampling density in these computations
Obviously difficult to do all these steps in this tutorial, but LVT also includes the capability to conduct the
second step alone (from an already established climatology/distribution), using the restart capabilities.

The run is being restarted from
a previous checkpoint file

 Using a categorical map for extracting time series information

Climatic regions defined by the U.S. Drought Monitor

 Examining example 5 output

46

gnuplot spi_south.plt

 Example 6

 Generating drought indicators (Percentiles)

 Percentile
Percentile is a value that indicates the percent of a distribution that is equal to or below it

Source: psu.edu

http://psu.edu

 Percentile metric in LVT

Percentile metric in LVT can be used with any variable of interest.
Similar to example 5, computing percentiles requires two passes through the data
1. First pass to compute the climatology
2. Second pass to derive the index relative to the climatology/distribution
LVT employs a modified approach used in the NLDAS drought monitor, where a
moving window of 5 days is used to improve the sampling density
Instead of using a single day across all years, 5 days are used (2 previous days,
current day, 2 next days)

Jan 3 climatology for example will include Jan 1 - 5 values across all available
years

Not limited to monthly timescales, works with all supported temporal averaging
intervals

 Example 6 configuration
The run is being restarted from a previous
checkpoint file, but do not require a restart file
for percentile calculations

Instead, the climatology files are expected in
the STATS/RST directory (provided with this
testcase)

Percentile calculations are
enabled (overall and in time)
and the extraction of gridded
outputs are also enabled.

 Examining example 6 output

51

gnuplot percentile_south.plt

gnuplot percentarea_south.plt

Plots the area under each of the USDM
defined drought category (D4 being the
most extreme drought)

 Example 7

 Benchmarking example

We’ll use the in-situ measurements from ARM over SGP to
develop a benchmark for latent heat flux (Qle) estimation

1. Compare the model simulation of Qle vs. ARM data
2. Develop a benchmark using LVT by training ARM Qle

measurements to ARM net radiation and air temperature
measurements (using out of sample, two-variable
regression)

3. Compare the model simulation of Qle vs benchmark

 Example 7 : Step 1 (compare model simulation to ARM measurements)

 lvt.config_model_arm gnuplot model_arm.plt

 Example 7 : Step 2 configuration

Datastream attributes table is used to define the training
configuration.

Two variables from datastream 1 (Rnet and Tair_f) are
used as inputs.

One variable from datastream 2 (Qle) is used as outputs

Benchmarking requires a new run mode option

Both analysis sources are ‘ARM’. They are
specified in consecutive columns

The output is trained to the inputs using a two-variable
linear regression model, using out of sample method

 Example 7 : Step 2 (conduct training and generate benchmark)

Step 2 produces output files that includes the
outputs of Qle generated through the trained
model

 Example 7 : Step 3 (compare model simulation to benchmark)

 gnuplot model_benchmark_arm.plt lvt.config_model_benchmark

Probably not the cleanest/fairest example. But
the regression model does a reasonable job of
capturing the Qle estimates

Questions/Comments/Feedback?

